In collider-based particle and nuclear physics experiments, data are produced at such extreme rates that only a subset can be recorded for later analysis. Typically, algorithms select individual collision events for preservation and store the complete experimental response. A relatively new alternative strategy is to additionally save a partial record for a larger subset of events, allowing for later specific analysis of a larger fraction of events. We propose a strategy that bridges these paradigms by compressing entire events for generic offline analysis but at a lower fidelity. An optimal-transport-based $\beta$ Variational Autoencoder (VAE) is used to automate the compression and the hyperparameter $\beta$ controls the compression fidelity. We introduce a new approach for multi-objective learning functions by simultaneously learning a VAE appropriate for all values of $\beta$ through parameterization. We present an example use case, a di-muon resonance search at the Large Hadron Collider (LHC), where we show that simulated data compressed by our $\beta$-VAE has enough fidelity to distinguish distinct signal morphologies.
translated by 谷歌翻译
Different people speak with diverse personalized speaking styles. Although existing one-shot talking head methods have made significant progress in lip sync, natural facial expressions, and stable head motions, they still cannot generate diverse speaking styles in the final talking head videos. To tackle this problem, we propose a one-shot style-controllable talking face generation framework. In a nutshell, we aim to attain a speaking style from an arbitrary reference speaking video and then drive the one-shot portrait to speak with the reference speaking style and another piece of audio. Specifically, we first develop a style encoder to extract dynamic facial motion patterns of a style reference video and then encode them into a style code. Afterward, we introduce a style-controllable decoder to synthesize stylized facial animations from the speech content and style code. In order to integrate the reference speaking style into generated videos, we design a style-aware adaptive transformer, which enables the encoded style code to adjust the weights of the feed-forward layers accordingly. Thanks to the style-aware adaptation mechanism, the reference speaking style can be better embedded into synthesized videos during decoding. Extensive experiments demonstrate that our method is capable of generating talking head videos with diverse speaking styles from only one portrait image and an audio clip while achieving authentic visual effects. Project Page: https://github.com/FuxiVirtualHuman/styletalk.
translated by 谷歌翻译
Through a study of multi-gas mixture datasets, we show that in multi-component spectral analysis, the number of functional or non-functional principal components required to retain the essential information is the same as the number of independent constituents in the mixture set. Due to the mutual in-dependency among different gas molecules, near one-to-one projection from the principal component to the mixture constituent can be established, leading to a significant simplification of spectral quantification. Further, with the knowledge of the molar extinction coefficients of each constituent, a complete principal component set can be extracted from the coefficients directly, and few to none training samples are required for the learning model. Compared to other approaches, the proposed methods provide fast and accurate spectral quantification solutions with a small memory size needed.
translated by 谷歌翻译
Body Mass Index (BMI), age, height and weight are important indicators of human health conditions, which can provide useful information for plenty of practical purposes, such as health care, monitoring and re-identification. Most existing methods of health indicator prediction mainly use front-view body or face images. These inputs are hard to be obtained in daily life and often lead to the lack of robustness for the models, considering their strict requirements on view and pose. In this paper, we propose to employ gait videos to predict health indicators, which are more prevalent in surveillance and home monitoring scenarios. However, the study of health indicator prediction from gait videos using deep learning was hindered due to the small amount of open-sourced data. To address this issue, we analyse the similarity and relationship between pose estimation and health indicator prediction tasks, and then propose a paradigm enabling deep learning for small health indicator datasets by pre-training on the pose estimation task. Furthermore, to better suit the health indicator prediction task, we bring forward Global-Local Aware aNd Centrosymmetric Encoder (GLANCE) module. It first extracts local and global features by progressive convolutions and then fuses multi-level features by a centrosymmetric double-path hourglass structure in two different ways. Experiments demonstrate that the proposed paradigm achieves state-of-the-art results for predicting health indicators on MoVi, and that the GLANCE module is also beneficial for pose estimation on 3DPW.
translated by 谷歌翻译
Text classification, a core component of task-oriented dialogue systems, attracts continuous research from both the research and industry community, and has resulted in tremendous progress. However, existing method does not consider the use of label information, which may weaken the performance of text classification systems in some token-aware scenarios. To address the problem, in this paper, we introduce the use of label information as label embedding for the task of text classification and achieve remarkable performance on benchmark dataset.
translated by 谷歌翻译
Recent research has reported a performance degradation in self-supervised contrastive learning for specially designed efficient networks, such as MobileNet and EfficientNet. A common practice to address this problem is to introduce a pretrained contrastive teacher model and train the lightweight networks with distillation signals generated by the teacher. However, it is time and resource consuming to pretrain a teacher model when it is not available. In this work, we aim to establish a stronger baseline for lightweight contrastive models without using a pretrained teacher model. Specifically, we show that the optimal recipe for efficient models is different from that of larger models, and using the same training settings as ResNet50, as previous research does, is inappropriate. Additionally, we observe a common issu e in contrastive learning where either the positive or negative views can be noisy, and propose a smoothed version of InfoNCE loss to alleviate this problem. As a result, we successfully improve the linear evaluation results from 36.3\% to 62.3\% for MobileNet-V3-Large and from 42.2\% to 65.8\% for EfficientNet-B0 on ImageNet, closing the accuracy gap to ResNet50 with $5\times$ fewer parameters. We hope our research will facilitate the usage of lightweight contrastive models.
translated by 谷歌翻译
Estimating the probability of failure for complex real-world systems using high-fidelity computational models is often prohibitively expensive, especially when the probability is small. Exploiting low-fidelity models can make this process more feasible, but merging information from multiple low-fidelity and high-fidelity models poses several challenges. This paper presents a robust multi-fidelity surrogate modeling strategy in which the multi-fidelity surrogate is assembled using an active learning strategy using an on-the-fly model adequacy assessment set within a subset simulation framework for efficient reliability analysis. The multi-fidelity surrogate is assembled by first applying a Gaussian process correction to each low-fidelity model and assigning a model probability based on the model's local predictive accuracy and cost. Three strategies are proposed to fuse these individual surrogates into an overall surrogate model based on model averaging and deterministic/stochastic model selection. The strategies also dictate which model evaluations are necessary. No assumptions are made about the relationships between low-fidelity models, while the high-fidelity model is assumed to be the most accurate and most computationally expensive model. Through two analytical and two numerical case studies, including a case study evaluating the failure probability of Tristructural isotropic-coated (TRISO) nuclear fuels, the algorithm is shown to be highly accurate while drastically reducing the number of high-fidelity model calls (and hence computational cost).
translated by 谷歌翻译
In natural language processing (NLP), the context of a word or sentence plays an essential role. Contextual information such as the semantic representation of a passage or historical dialogue forms an essential part of a conversation and a precise understanding of the present phrase or sentence. However, the standard attention mechanisms typically generate weights using query and key but ignore context, forming a Bi-Attention framework, despite their great success in modeling sequence alignment. This Bi-Attention mechanism does not explicitly model the interactions between the contexts, queries and keys of target sequences, missing important contextual information and resulting in poor attention performance. Accordingly, a novel and general triple-attention (Tri-Attention) framework expands the standard Bi-Attention mechanism and explicitly interacts query, key, and context by incorporating context as the third dimension in calculating relevance scores. Four variants of Tri-Attention are generated by expanding the two-dimensional vector-based additive, dot-product, scaled dot-product, and bilinear operations in Bi-Attention to the tensor operations for Tri-Attention. Extensive experiments on three NLP tasks demonstrate that Tri-Attention outperforms about 30 state-of-the-art non-attention, standard Bi-Attention, contextual Bi-Attention approaches and pretrained neural language models1.
translated by 谷歌翻译
Time series motif discovery has been a fundamental task to identify meaningful repeated patterns in time series. Recently, time series chains were introduced as an expansion of time series motifs to identify the continuous evolving patterns in time series data. Informally, a time series chain (TSC) is a temporally ordered set of time series subsequences, in which every subsequence is similar to the one that precedes it, but the last and the first can be arbitrarily dissimilar. TSCs are shown to be able to reveal latent continuous evolving trends in the time series, and identify precursors of unusual events in complex systems. Despite its promising interpretability, unfortunately, we have observed that existing TSC definitions lack the ability to accurately cover the evolving part of a time series: the discovered chains can be easily cut by noise and can include non-evolving patterns, making them impractical in real-world applications. Inspired by a recent work that tracks how the nearest neighbor of a time series subsequence changes over time, we introduce a new TSC definition which is much more robust to noise in the data, in the sense that they can better locate the evolving patterns while excluding the non-evolving ones. We further propose two new quality metrics to rank the discovered chains. With extensive empirical evaluations, we demonstrate that the proposed TSC definition is significantly more robust to noise than the state of the art, and the top ranked chains discovered can reveal meaningful regularities in a variety of real world datasets.
translated by 谷歌翻译
尽管No-U-Turn采样器(螺母)是执行贝叶斯推断的广泛采用方法,但它需要许多后梯度,在实践中计算可能很昂贵。最近,人们对基于物理的动力学(或哈密顿)系统和哈密顿神经网络(HNNS)的机器学习引起了重大兴趣。但是,这些类型的体系结构尚未应用于有效地解决贝叶斯推论问题。我们建议使用HNN有效地进行贝叶斯推断,而无需大量的后梯度。我们向HNNS(L-HNN)引入潜在变量输出,以提高表达性和减少的集成误差。我们将L-HNN集成在坚果中,并进一步提出一种在线错误监控方案,以防止L-HNNS可能几乎没有培训数据的区域中采样堕落。考虑到几种复杂的高维后密度,并将其性能与螺母进行比较,我们证明了在线错误监测中的L-HNN。
translated by 谷歌翻译